Segmentation of large images based on super-pixels and community detection in graphs

نویسندگان

  • Oscar A. C. Linares
  • Glenda Michele Botelho
  • Francisco Aparecido Rodrigues
  • João Batista Neto
چکیده

Image segmentation has many applications which range from machine learning to medical diagnosis. In this paper, we propose a framework for the segmentation of images based on super-pixels and algorithms for community identification in graphs. The super-pixel presegmentation step reduces the number of nodes in the graph, rendering the method the ability to process large images. Moreover, community detection algorithms provide more accurate segmentation than traditional approaches, such as those based on spectral graph partition. We also compare our method with two algorithms: a) the graph-based approach by Felzenszwalb and Huttenlocher and b) the contour-based method by Arbelaez. Results have shown that our method provides more precise segmentation and is faster than both of them.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salt and Pepper Noise Removal using Pixon-based Segmentation and Adaptive Median Filter

Removing salt and pepper noise is an active research area in image processing. In this paper, a two-phase method is proposed for removing salt and pepper noise while preserving edges and fine details. In the first phase, noise candidate pixels are detected which are likely to be contaminated by noise. In the second phase, only noise candidate pixels are restored using adaptive median filter. In...

متن کامل

A New Algorithm for Skin Lesion Border Detection in Dermoscopy Images

Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact on the subsequent steps of skin cancer computer-aided diagnosis using demoscopy images. Since dermoscopy images suffer from artifacts such as shading and hair, there is a need ...

متن کامل

Image Segmentation using Improved Imperialist Competitive Algorithm and a Simple Post-processing

Image segmentation is a fundamental step in many of image processing applications. In most cases the image’s pixels are clustered only based on the pixels’ intensity or color information and neither spatial nor neighborhood information of pixels is used in the clustering process. Considering the importance of including spatial information of pixels which improves the quality of image segmentati...

متن کامل

Detection of lung cancer using CT images based on novel PSO clustering

Lung cancer is one of the most dangerous diseases that cause a large number of deaths. Early detection and analysis can be very helpful for successful treatment. Image segmentation plays a key role in the early detection and diagnosis of lung cancer. K-means algorithm and classic PSO clustering are the most common methods for segmentation that have poor outputs. In t...

متن کامل

Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System

Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IET Image Processing

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017